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A model  is given for  a v ibra t iona l ly  f luidized bed that  i nco rpo ra t e s  the densi ty  reduct ion and allows 
one to ca lcula te  the p r e s s u r e  d i f ference  a c r o s s  the bed ave raged  over  the per iod  of osci l la t ion.  

The phys ica l  p a r a m e t e r s  of a bed and of the med ium in which  it  l ies  go with the geome t r i ca l  f ea tu re s  of 
the appara tus  and the mode of v ibra t ion  to produce  a g r ea t  va r i e ty  of f o r m s  of behavior  in a v ibra t iona l ly  f lu id:  
ized bed [1], p r i m a r i l y  because  of the mul t ip l ic i ty  of phys ica l  f ac to r s  that  can influence the f luidizat ion,  which 
cons iderably  h inders  any a t t empt  at  a detai led theory  of the p r o c e s s .  

I t  is inadequate to r e p r e s e n t  even a shallow granu la r  bed used at  a mode ra t e  v ibra t iona l  f requency  as a 
r igid porous  s y s t e m  in te rac t ing  with the grid and the m e d i u m ,  although this  al lows of compa ra t i ve ly  s imple  
ana lys i s  [2-4]. Dynamic  f ea tu re s  such as the expansion of the bed become v e r y  impor tan t  [5, 6], which is  r e -  
la ted to the expansion occu r r ing  in an o rd inary  f luidized bed in r e sponse  to the flow ra te  [7, 8], and these  have 
a m a r k e d  influence on the p r e s s u r e  f luctuat ions.  This  expansion is the ma in  cause of the nonzero  t i m e - a v e r -  
aged* p r e s s u r e  d i f ference  a c r o s s  such a bed and the reduct ion in the hydraul ic  r e s i s t a n c e  caused by the v i b r a -  
tion [5]. 

If the bed is r e l a t ive ly  deep and the v ibra t iona l  f requency  is r e l a t ive ly  high, the p ropaga t ion  of s t r e s s  
waves  in the dense phase  and of poros i ty  waves  in the expanded phase  can begin to play a cons iderable  p a r t  [9, 
10], as  can the com pre s s i b i l i t y  of the fluid [11] and the wal l  f r ic t ion  [12]. Any ana lys i s  of these  f ac to r s  r e -  
qu i res  cons idera t ion  of the v i s coe l a s t i c  and other  p a r a m e t e r s  of the bed as a porous  med ium,  and thus involves 
d i scuss ing  the co r respond ing  re laxa t ion  t imes  and the wave propagat ion  speeds ,  which means  that  in fac t  only 
the lower  p a r t  of the bed v i b r a t e s  in accordance  with the phys ica l  model  desc r ibed  in [6]; it is a lso  evident  that  
t he re  a r e  cohesion ef fec ts  in a f inely divided bed,  which c a n  a l t e r  the effect ive  c h a r a c t e r i s t i c s  [13]. 

Here  we neglec t  all  e f fec ts  concerned with nonuniformity in the s ta te  of s t r e s s ,  compres s ib i l i t y  in the 
fluid (gas),  and wall  f r ic t ion;  i .e . ,  we cons ider  only a compara t i ve ly  shallow bed. The hydraul ic  r e s i s t a n c e  
of the bed and of the v ib ra t ing  grid a r e  a s s u m e d  to be l inear  in the gas speed,  while the mot ion of the bed is 
taken as  one-d imens iona l .  

Immedia te ly  a f t e r  the bed b e c o m e s  detached f r o m  the gr id  at t ime  it ,  it move  s upwards  re la t ive  to the latte r 
and e x e r t s  a r e s i s t a n c e  o n t h e p a s s i n g g a s ,  whiehtends  to accumula te  in the  i n c r e a s i n g g a p  between the bot tom 
of the bed and the grid.  The hydraul ic  fo rce  act ing between the pa r t i c l e s  within the bed and the gas flow is 

f = C K  (p) u ,  K (0)  = 1, p = 1 - -  ~ (1 )  

and this is dependent  on the local  poros i ty  e and the re la t ive  gas speed u; the r e s i s t a n c e  coeff icient  C for  smal l  
(Stokes) pa r t i c l e s  is 6w#a ,wh i l enumerous theo re t i ca l  and e m p i r i c a l  exp re s s ions  a r e  avai lable  for  K(p), which 
inco rpo ra t e s  the e f fec ts  of the h indered flow. 

*To avoid misunders tanding ,  we mus t  s t a te  at once that  some  w o r k e r s ,  including [1], suppose  that the p r e s s u r e  
d i f ference  a c r o s s  the bed ave raged  over  the per iod  of v ib ra t ion  is an independent ef fec t ,  while the s ta t ic  p r e s -  
sure  d i f ference  is some  quantity independent of the dynamic  (pulsating) p r e s s u r e .  Phys ica l ly  speaking,  this 
viewpoint  is en t i re ly  e r r o n e o u s ,  s ince the p r e s s u r e  is an in tens ive  t he rmodynamic  p a r a m e t e r .  In fac t ,  v i b r a -  
t ional  f luidization is highly nonl inear ,  s ince any given ha rmon ic  osci l la t ion applied to this nonl inear  s y s t e m  
re su l t s  in all mult iple  f requenc ies  (as in any nonl inear  sy s t em) ,  including a component  at  ze ro  f requency.  A 
nonzero  ave rage  p r e s s u r e  d i f ference  r e f l ec t s  the l a t t e r  ha rmonic .  This  is emphas ized  by the use  of the t e r m  
ave rage  p r e s s u r e  d i f fe rence  ins tead of the inappropr ia te  t e r m  s ta t ic  p r e s s u r e  di f ference.  
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The hydraul ic  fo rces  on par t ic les  at the upper and lower boundaries of the bed may differ f rom f, and in 
par t icu lar  may be substantially less than the lat ter  [14], so there may be no balance between the gravitat ional ,  
inert ial ,  and hydraul ic  fo rces  for  such par t ic les ;  the sum of these fo rces  is nonzero.  It is then readily seen 
that the total force acting on a par t ic le  at the lower surface of a bed tends to re turn  a part icle to the lat ter  when 
the bed begins to be detached f rom the grid (when the gap between the bed and the grid inceeases) ,  i .e. ,  the 
lower surface is stable in the same way as in the free surface of a fluidized bed. Conversely,  the force acting 
on a part icle  at the upper surface tends to take the part icle  fur ther  f rom this surface in the incident gas flow; 
i .e . ,  the upper surface is unstable in the sense that a par t ic le  leaving the lat ter  moves fas ter  than the center 
of gravity of the bed. 

The set of such par t ic les  di rect ly  in contact  with the incident flow m a y  be identified with the effective 
upper boundary of the expanding bed; the relat ive motion of this boundary causes an increase  in the porosi ty  
of the upper par t  of the bed. This resul ts  in a wave of elevated poros i ty ,  which propagates  downward into the 
bed and is analogous to the waves that occur  in ord inary  fluidized beds in response to changes in fluid flow [7, 
81. 

In the final stage (when the gap between the bed and the grid decreases} ,  the  role of the boundary su r -  
faces becomes different:  The gas flow is then incident on a lower surface that approaches the grid more  rapidly 
than does the center  of gravi ty ,  while the upper surface  becomes stable and the increased-poros i ty  wave 
propagates  f rom below upward. The bed c lear ly  continues to expand. 

Finally,  at  some instant t '  the lower surface comes in contact with the grid,  so the expansion of the b e d  
ceases.  The par t  of the bed that has fallen becomes closely packed, and the thickness of the c lose-packed par t  
increases  very  rapidly with t. Let  t" be the instant at which the entire bed attains the c lose-packed state; i .e. ,  
this is the time when the upper surface of the bed falls and is less  than the t ime tl + 2~/r for f resh  detachment 
of the bed f rom the grid,  in which case the situation will repeat .  If this is not so,  the bottom close-packed 
par t  of the bed detached f rom the grid will collide with the descending par t ic les  in the fluidized state and will 
entrain the la t ter ,  so the mean porosi ty  of the bed may even become less than that d i rect ly  after  detachment.  
In principle ,  piston s t ruc tures  may be fo rmed ,  after  severa l  vibrational cycles ,  and therefore  the nonuniformity 
of the bed, which previously was neglected,  can become very  substantial.  Here we envisage only a very  s im-  
ple fo rm of vibrat ional  fluidization in which the bed has t ime to rever t  to the c lose-packed state as  a whole 
before  each f r e sh  detachment.  

The accelera ted  action of the boundary layer  facing the incident gas flow can be descr ibed if we assume 
that the par t ic les  are  acted on by a hydraul ic  force  af, where f is defined by (1) and a< 1; unfortunately, no 
theoret ical  evidence is available on a, while the experimental  evidence [14] re la tes  to single par t ic les  near  a 
regular ly  packed bed and having a definite disposition with respec t  to the par t ic les  in the bed, although the m e a -  
sured forces  are substantially dependent on the disposition. Therefore ,  the data of [14] cannot be used direct ly  
to es t imate  a,  which applies par t icu lar ly  to the par t ic les  at the boundary, since these are  randomly disposed 
one with respec t  to another and with respec t  to the other par t ic les  in the bed. It is best  to consider a as an 
adjustable empir ica l  pa ramete r .  

This a and the various assumptions above make it meaningless to consider  the po ros i ty -~ave  propaga-  
tion in excessive detail ,  which also is difficult even in a l inearized formulation;  on the other hand, it is physi -  
cally obvious and well confirmed by exper iment  that for small  t imes (usually on the o rder  of 0.01-0.1 sec) and 
for A/h 0 << 1 the bed does not have t ime to expand substantially,  and therefore  the cur rent  height 2h and mean 
porosi ty  e differ only slightly f rom 2h 0 and e0, the values in the c lose-packed state. The condition ph = P0h0 = 
const then gives us that 

1 --e ---- p ~. p0 (I --~),  ~ = (h--ho)/ho(< L (2) 

where the relat ive expansion rv ac ts  as a small  pa ramete r .  

It is therefore  natural  to neglect  the nonuniformity of the bed in the fluidized state,  which is associa ted 
with poros i ty-wave propagation,  and then the bed is considered as expanding uniformly,  so we can utilize the 
mean porosi ty  e defined by (2). Here in most  instances it is sufficient to assume that e = e 0 in o rde r  to calcu-  
late the hydraulic fo rces ;  the difference between e and e 0 becomes significant only in evaluating effects due 
solely to the expansion of the bed. Fur ther ,  the smal lness  of ~ enables one to assume that the time interval 
t " - t '  is small  by compar ison with the fluidization phase t" -t~ ~ t ' - t l .  

We use the labora tory  coordinate sys tem x, in which the ver t ica l  coordinates of the vibrat ing grid and 
of the lower and upper boundaries of the bed and of the center  of gravity a re ,  respect ively ,  x 0 = A since t ,  
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x l ,  x2 and x c = x 1 + h = x 2 - h ;  we t ake  e = e 0 to ge t  the  u s u a l  equa t ion  of m o t i o n  fo r  the  c e n t e r  of g r a v i t y  in 

t e r m s  of un i t  m a s s  of p a r t i c l e s  [2-4] :  

xc = - -  g + ~KQ, [~ = C /m,  K = K (Po), (3) 

w h e r e  m is  the  m a s s  of a s i ng l e  p a r t i c l e  and a dot  d e n o t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to  t i m e .  In w r i t i n g  (3) 
we have  n e g l e c t e d  the  d i f f e r e n c e  be tween  the  h y d r a u l i c  f o r c e s  a c t i n g  on the  b o u n d a r y  p a r t i c l e s  and  the f of  (1), 
wh ich  i s  j u s t i f i e d  fo r  a /h  0 << 1; we have  a l s o  n e g l e c t e d  the  n o n s t a t i o n a r y  c o m p o n e n t s  in the  h y d r o d y n a m i c  i n t e r -  
a c t i o n ,  which  a r e  i m p o r t a n t  fo r  w ~ # / a  3 d o [15]. A l s o ,  t he  r e l a t i v e  i n f i l t r a t i o n  r a t e  i s  Q a v e r a g e d  o v e r  the  bed,  
i . e . ,  o v e r  x in the  r a n g e  f r o m  Xl to  x 2. 

If the g r i d  w e r e  i m p e r m e a b l e ,  we would  have  Q = - Z c  = - (Xc -X0) ;  on the  o t h e r  h a n d ,  Q = - Z c  + q ,  f o r  
a p e r m e a b l e  g r i d ,  w h e r e  q i s  the  gas  f low th ro ugh  un i t  a r e a  of  the  g r i d  in to  the  f r e e  c a v i t y  x 0 < x < x l  (0 < z < 
z l ) .  If  the  gas  p r e s s u r e  above  the bed  i s  the  s a m e  a s  t h a t  u n d e r  the  g r i d ,  w h i l e  K'  i s  the g r i d  r e s i s t a n c e  c o e f -  
f i c i e n t ,  then  we have  wi th in  the w o r k i n g  a c c u r a c y  t ha t  

h p  = - -  2hopoda[~KQ = K"  q, q = - -  • ~ = ..2..h~176 (4) 
K'  

and f u r t h e r  

Q = - -  (1 + . ) "  ~c. (5) 

We t r a n s f o r m  (3) to  a c o o r d i n a t e  z = x - x  0 l i nked  to  the  g r i d  and u s e  the  obv ious  i n i t i a l  cond i t ion  to  ge t  
the  fo l lowing  equa t ion  fo r  z c- 

-- 13K ~}c = 1 g 
z r  ~ --g+o~Asincot, t:>t,=--arcsin , 

co ~ A  (6) 

zc = h0, zc = 0 (t = t,). 

We now c o n s i d e r  the m o t i o n  of the  u p p e r  b o u n d a r y  a f t e r  d e t a c h m e n t  of the  bed ;  the  e q u a t i o n  a n a l o g o u s  to  
(3) t a k e s  the  f o r m  

;= = - -  g +  o~Ku~, x~ = x~ + / 2 ,  ~ = q - - ~ i .  (7)  

Then  in the  z c o o r d i n a t e  s y s t e m  we ge t  

z c + ~ = - - g  + ~ A  sin cot --treK [(1 + •  e + h]. (8) 

We s u b s t r a e t  (6) f r o m  (8) to  ge t  the  fo l lowing  e q u a t i o n  f o r  h:  

rz + of3Kiz = 0 - ~)(t  + ~.)-'[~Kic, 
(9) 

h = h o ,  h = 0  ( t = t , ) .  

The  equa t ion  fo r  the  l o w e r  b o u n d a r y  a t  the end of the  m o t i o n  i s  e n t i r e l y  a n a l o g o u s  to (8); the  c o r r e s p o n d -  
ing  equa t ion  fo r  h i s  

h + ~l~Kh = - -  (1 - -  ~)(1 +• 

h = h., h = h,  (t = t,), (10) 

where h ,  and la, are the values of the funct ion der ived f rom (9) and the der iva t i ve  at t ime t,.  The la t te r  is  the 
s o l u t i o n  to t .  w i th in  the  f r a m e w o r k  of ou r  r e p r e s e n t a t i o n .  E q u a t i o n s  (9) and (10) a r e  r e a d i l y  c o m b i n e d  into 
one if  we use  ~c ( t . )  = 0 on the  r i g h t  in e a c h ;  t h i s  a p p l i e s  up to  t i m e  t '  c o r r e s p o n d i n g  to f a l l  of the  l o w e r  bound-  
a r y  onto the  g r id .  

If  the  h y d r a u l i c  r e s i s t a n c e  of the  g r i d  i s  much  l e s s  than  t ha t  of the bed (~t >> 1), the  i n h o m o g e n e o u s  p a r t s  
in (9) and (10) e s s e n t i a l l y  d i s a p p e a r ,  which  c o r r e s p o n d s  to  c e s s a t i o n  of e x p a n s i o n  in the  d e t a c h e d  bed;  i t  is  
r e a d i l y  s e e n  tha t  in g e n e r a l  the  e x p a n s i o n  of the bed  i n c r e a s e s  m o n o t o n i c a l l y  a s  ~ d e c r e a s e s ,  i . e . ,  a s  the  r e s i s -  
t a n c e  of  the g r i d  i n c r e a s e s ,  and i t  i s  m a x i m a l  f o r  ~ = 0, i . e . ,  f o r  an i m p e r m e a b l e  g r i d .  S i m i l a r l y ,  ~ g o v e r n s  
a l l  the  o t h e r  e f f ec t s  r e l a t e d  to e x p a n s i o n  of the  bed ,  in p a r t i c u l a r  the  n o n z e r o  a v e r a g e  p r e s s u r e  d i f f e r e n c e .  I t  
h a s  f r e q u e n t l y  been  o b s e r v e d  by e x p e r i m e n t  t ha t  t h i s  p r e s s u r e  d i f f e r e n c e  v a n i s h e s  and the p u m p i n g  ac t i on  of the  
bed  c e a s e s  when the h y d r a u l i c  r e s i s t a n c e  of the  g r i d  i s  s m a l l .  An  a t t e m p t  h a s  been  m a d e  [16] to  e x p l a i n  th i s  in 
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~(~') 

o 4 8 0 4' ~ 

Fig. 1. Dependence of ~ at t ime  ~' on v for:  a) a = 0.6 and 
var ious  k; b) k = 0.3 and var ious  ~. The broken l ines define 
the f requenc ies  Vm cor responding  to m a x i m u m  expansion of 
the bed. 

t e r m s  of a valve ef fec t  at  the pe r fo r a t ed  grid due to d i f fe rences  in occlusion of the a p e r t u r e s  in the r i s ing  and 
fal l ing s ta tes .  The explanation was  unsa t i s fac to ry  because  there  is a f r ee  cavity above the grid in the r i s ing  
phase ,  which is s ignif icant  only for  the product ion of the p r e s s u r e  di f ference a c r o s s  the bed, and this f r ee  
cavity is a lmos t  en t i re ly  c lea r  of pa r t i c l e s .  For  def in i teness ,  we consider  only the case ~ =  0 in what follows; 
however ,  all the calculat ions can be readi ly  c a r r i e d  through for  any o ther  value of >t. 

We introduce the following d imens ion less  va r i ab l e s  and p a r a m e t e r s :  

it) zG-- h~ /~-- h~ k = q v = (11) 
-~ = ,or, ~ = A ' ~ = - - A - - '  o)~A' l~g 

Then f r o m  (6), (9), and (10) we get 

~ + v - I ~ = - - k + s i n z ,  ~ ; = ~ = o  (~ =~0, 

Here  a dot denotes different ia t ion with r e s p e c t  to r .  
[2, 3], and the solution is 

(12) 

The f i r s t  equation in (12) is one f i r s t  cons idered  by Kroll  

('0 ! + v ~ - ( k v  + V ' f - - ' ~ ) exp  ( ~ x - ' h )  +v(kv + 1 / ~ ) - -  

- -  kv (~ - -  ~1) v~ v (13 )  - -  sin x - -  cos T. 
1 + v  ~ 1 + v  ~ 

The solution to the second equation in (12) for  the region T 1 <- T - < r ,  is  

~ ( z ) = ~ ~ 1 7 6  1 - - ( ~ - - ~ O  , n ~  v + 
O 

-~ (kV -~ ]/']"-~k2) ] __ 1-~ffkV ('If- "t'l)-~ ~ (~V ~- l//1--k2)X 
1 

Xe.~  - �9 
v l + v  2 a 2 + v ~  l + v  ~ e ~ + v  ~ 

(14) 

and for  the region T, ~ �9 -< T ' ,  i s  

~ l (~ )= - -~ l ' (Z )+  {2~l~176 [ - - ~ ( ~ , - - % ) ] }  • 

[~ 1 ,10, xexp - -  (~- -~ , )  + 2  1 - - ~ ( ~ , ) .  
�9 V (1 

The instant  T, is defined by ~(T,) = 0, which is readi ly  wr i t ten  in expl ici t  f o r m  by solving (13); t he r e fo re ,  
the d imens ion less  paths of the center  of gravi ty  and of the bed expansion a re  dependent only on three  d imens ion-  
l ess  p a r a m e t e r s :  the above quantity a, the quantity k (the r ec ip roca l  of the ord inary  mult ipl ici ty of the v i b r a -  
t ional  acce le ra t ion) ,  and the re la t ive  f requency v. F r o m  (13)-(15) we readi ly  der ive  s impl i f ied fo rmulas  c o r -  
responding to smal l  k, smal l  and la rge  v, and so on. 
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F i g .  2 F i g .  3 

F i g .  2. C u r v e s  in  the  p a r a m e t e r  p l ane  f o r  v i b r a t i o n s  tha t  d e t e r -  
m i n e  the  m a x i m u m  e x p a n s i o n  of a bed  of p a r t i c l e s  h a v i n g  flK = 100 
s e c - 1 ;  the  n u m b e r s  on the c u r v e s  a r e  the  v a l u e s  of a.  The  b r o k e n  
l i n e s  a r e  l i n e s  of c o n s t a n t  k. A ,  r am;  w/2~ ,  Hz. 

F i g .  3. D y n a m i c s  of  bed  e x p a n s i o n  f o r  k = 0.1,  v = 1.0 (7.  = ( 3 . 8 ) , a n d  

v a r i o u s  a.  

o/~ 0,5 

qzo4 
] 

o 4 .% 

F i g .  4. B o u n d a r i e s  b e -  

tween  m i l d  v i b r o f l u i d i z a -  
t ion  m o d e s  (not a c c o m -  
p a n i e d  by c o l l i s i o n  of s u s -  
p e n d e d  l a y e r s  of g r a n u l a r  
m a t e r i a l )  in the  (k, v) 
p h a s e  p l a n e  f o r  v a r i o u s  or. 

S t r i c t l y  s p e a k i n g ,  the  s o l u t i o n  to (13) a p p l i e s  only up to T = T2, when the  c e n t e r  of  g r a v i t y  of  the  
bed  i s  a g a i n  a t  the  l e v e i  z c = h0, w h i l e  the  s o l u t i o n  of (15) a p p l i e s  up to T = T' <T2, when the  l o w e r  b o u n d a r y  
of t he  bed  c o m e s  in c o n t a c t  wi th  the  g r i d .  H o w e v e r ,  the  t i m e  i n t e r v a l  ( d i m e n s i o n l e s s )  7 " - 7 '  is  s m a l l  by c o m -  
p a r i s o n  with  7 2 - 7  l,  so  (15) can  s t i l l  be u s e d  fo r  ~ in  the  i n t e r v a l  (7", 7 ' ) .  The  equa t ions  f o r  t h e s e  d i m e n s i o n -  
l e s s  t i m e s  a r e  

1:, = arcsin k, ~ (~.) = 0, ~ (+') - -  ~ (~') -~ 0, (16) 

(+.) = 0, ~ (v") + n (+") = 0 

The  cond i t i ons  fo r  r e a l i z a t i o n  of t h e s e  m o d e s  (without  c o l l i s i o n  be tw e e n  the beds  of g r a n u l a r  m a t e r i a l  in 
the  s u s p e n d e d  s t a t e )  can  then  be pu t  a s  

~"<2 ~1 + 2~ = arcsin k + 2~. (17) 

F i g u r e  1 shows  the d i m e n s i o n l e s s  e x p a n s i o n  of the  bed  a t  t i m e  T' a s  a func t ion  of v fo r  v a r i o u s  k and ~; 
the  e x p a n s i o n  i s  m a x i m a l  fo r  the  va lue  Vm of the  d i m e n s i o n l e s s  f r e q u e n c y ,  which  i s  i n d e p e n d e n t  on k and a. 
A s  would  be e x p e c t e d ,  v m d e c r e a s e s  m o n o t o n i c a l l y  a s  k i n c r e a s e s  f o r  a g iven  a, wh i l e  i t  i n c r e a s e s  m o n o t o n i -  
c a l l y  wi th  a fo r  a g iven  k. The va lue  of fl in (3) is  i n v e r s e l y  r e l a t e d  to the  d e n s i t y  and p a r t i c l e  s i z e ,  and 
d i r e c t l y  to the  d e n s i t y  and v i s c o s i t y  of the  g a s ,  wh i l e  the c o n v e r s e  a p p l i e s  to the v of  (11). T h e r e f o r e ,  t h i s  
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var ia t ion  in the physica l  p a r a m e t e r s  should reduce the expansion of the bed for  v > Vm; however ,  the converse  
e f fec t  should occur  for  sufficiently smal l  d imens ion less  f requenc ies  (v < Vm). 

The v = vm(k , a) curves  a re  read i ly  der ived  f r o m  curves  such as those shown in Fig. 1, and they c o r -  
respond to the m a x i m u m  expansion in the (A, w) p a r a m e t r i c  plane. F igure  2 shows such curves  for  va r ious  
and flK = 100 sec  - i .  T h e s e p a r a m e t r i c  re la t ionsh ips  a r e  of i n t e r e s t b e c a u s e  inpr ine ip le  they al low one to define 
opt imal  values  for  the v ibra t ion  p a r a m e t e r s  such that  all  eII ec ts  due to bed expansion will be the m o s t  ex ten-  
s ive .  In p a r t i c u l a r ,  in some  ins tances  one na tura l ly  expects  accentuat ion of the s m a l l - s c a l e  motion within the 
bed as the expansion i n c r e a s e s ,  and hence acce l e ra t ion  of va r ious  t r a n s f e r  p r o c e s s e s  a ssoc ia ted  with such 
motion.  Figure  2 shows also the l ines  of k(A, w) = const  for  compar i son .  

F igure  3 shows a pa r t i cu l a r  example  of an expanding bed; ~ff) oscf f ia tes  slightly around the asympto t ic  
l ines a f t e r  a shor t  in te rva l ,  and all  these  l ines e m e r g e  f r o m  a single point on the T axis.  Analyt ical  equations 
a re  readi ly  der ived  fo r  these  a sympto t e s ,  and these  may  be of value in approx imate  calculat ions.  

F igure  4 shows the bounds to the exis tence  of these s t a t e s ,  as indicated by (17), which a re  rea l i zed  ff the 
image point in the phase  plane l ies  above the boundar ies .  It is readi ly  seen that  any change in ~ r e su l t s  in a 
substant ial  change in the curves  in Fig. 4; on the other  hand,  the curves  reach  a s teady level  at  high f requen-  
cies .  The beds of g ranular  m a t e r i a l  coll ide while suspended if the image point l ies  below the boundar ies  in 
Fig. 4. 

We now cons ider  the va r i a t ions  in p r e s s u r e  d i f ference  Ap in the bed (posi t iveApcorrespond to reduced 
p r e s s u r e  in the gap between the bed and the grid).  If we neglect  the expansion of the bed for  ~ = 0, we get 
f r o m  (4), (5), and (11) that  

Ap = P~,  P = 2dl~KOohoA (18) 

which is the r e su l t  impl ied by Kro l l ' s  t h e o r y  [2, 3]. The actual  dependence of ~p  on A and flK is de te rmined  
by the physical  p r o p e r t i e s  of the pa r t i c l e s  and gas ,  and it  is nonlinear  because  these quant i t ies  a re  dependent 
on k and v, which influence the d imens ion less  veloci ty  ~ of the center  of gravi ty .  However ,  ~ p  is l inear ly  de -  
pendent on h0; m o r e o v e r ,  it is readi ly  seen  that  the p r e s s u r e  dis tr ibut ion over  the depth of the bed at any t ime  
[ a p a r t f r o m  the shor t  in terva l  ( t ' ,  tw)] is  a lso  l inear .  The la t t e r  co r responds  with e x p e r i m e n t  for  sufficiently 
shallow beds ,  which a re  the ones to which this theory  applies .  The c h a r a c t e r i s t i c  re la t ionships  between the 
quantity of (18) and the va r ious  p a r a m e t e r s  a r e  f a m i l i a r  and need not be given here .  

We see f r o m  (18) that the p r e s s u r e  under  the bed is reduced in the initial  s tage (~ > 0), whereas  it  is e l e -  
vated by compar i son  with the p r e s s u r e  above the bed in the final stage.  The ave rage  p r e s s u r e  di f ference is de-  
t e rmined  by averag ing  ~ p  over  a v ibra t ion  per iod ,  and in this approximat ion  we have 

0 0 "~l 

since eft2) = C(~1) = 0 by definition. 

Consequently,  we may  e s t i m a t e  the ave rage  p r e s s u r e  d i f ference  only if we incorpora te  the d i f ference  be -  
tween e and e 0, i . e . ,  use  (6), (9), and (10) and the equations of (12) impl ied by these for  K(p) instead of K = 
K(P0); we use  (2) with the obvious re la t ion  

,z = (A/ho) ~, (2'0) 

and find that  the s m a l l - p a r a m e t e r  method may  be employed on the bas is  that  

= ~(o~ _+_ (Alho) ~(l, 't- . . . .  ~l = ~l t~ -{- (Alho)~l (1' -t- . . . . .  (21) 

where  the quant i t ies  g(i) and ~(i) a re  of identical  o rde r  in A/h0; the equat ions for  these a re  der ived  by means  of 
s tandard  per tu rba t ion  theory.  The equations for  ~(0) and ~(0) coincide with those wr i t t en  above in (12); i . e . ,  
these  quant i t ies  a re  r e p r e s e n t e d  in the f o r m  of (13)-(15). The formula t ion  and solution of l inear  equations for  
~0) and ~(1) i s  e l e m e n t a r y ,  but there  is no need to do th is  in o rde r  to calculate 5p. In fac t ,  the deviat ions of 
the actual  poros i ty  f r o m  e 0 a re  sma l l ,  so instead of (8) we have up to t e r m s  of the f i r s t  o rde r  in A/h 0 that  

A N~ I Ap == P K(p)~ = p  ( 1 - -  h--o ' - -  (22) 
K ,, 

Here  we have used  (2), (20), and (21), together  with the identity ph = P0h0, which re f l ec t s  the conservat ion 
of the granular  m a t e r i a l .  
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Dependence of 5p' on v for :  a) G = 0.6 and var ious  
k; b) k = 0.3 and var ious  a. 

We average (22) over  the period of osci l lat ion in accordance  with (19) and use the definitions of P and N 
of (18) and (22) to get within our accuracy  that 

6 0 - - - -  2nh0 " d o  ~=p, 

~' (23) 

T.r 

As K(p) is an increas ing  function, the sign of 5p is de termined by the sign of the integral  in (23); a qualitative 
examination shows that 5p' is posi t ive,  at least  for  the s tates  mos t  commonly used,  i .e. ,  cor responds  to a 
mean p r e s s u r e  reduction under the bed. An interes t ing point is that  ~p in that case is independent of the bed 
depth. Figure 5 shows the dependence of 5p' on the dimensionless  p a r a m e t e r s ;  the relat ionship r e sembles  that 
for  the dimensionless  re lat ive expansion of the bed in Fig. 1. 

It would be quite possible to calculate the components of second and higher o rde rs  in the express ions  for  
~, N, 5p, and so on; however ,  we have neglected the nonuniformity of the expansion above, and therefore  such 
calculations would exceed the accuracy  of the physical  formulat ion.  Moreover ,  even the resu l t  of (23) is to be 
t reated as approximate and applying only within a coefficient of the o rde r  of one. 

The l i te ra ture  contains a great  var ie ty  of suggestions on ways of classifying modes of vibrat ional  f luidi-  
zation; leaving aside the case of a v ibroviscous  bed (k > 1), we see that it is best  to distinguish f i r s t  shallow 
and deep beds,  in which the effects of v i scoe las t ic  and other  waves and of wall fr ict ion are  correspondingly  
slight and substantial.  Second, it is des i rable  to distinguish mild and severe  vibrational  fluidization states.  
In the f i r s t ,  the bed has t ime to sink down onto the grid before the next detachment,  whereas  in the second this 
is not so,  and one gets  colliding layers  of fluidized mater ia l .  On this bas is ,  we have considered mild f luidiza-  
tion states in the above. 

A 
(/ 

C 

do, dl 
f 
g 
h 
K 
K' 
k 
I n  

N 
P 
Ap, 5p 
Q 
q 

NOTATION 

is the vibrat ion amplitude; 
is the par t ic le  radius;  
is the hydraul ic  res i s tance  coefficient for  a par t ic le ;  
a re  the gas and par t ic le  densi t ies;  
is the hydraul ic  force;  
is the acce lera t ion  due to gravity;  
~s the half height of the bed; 
xs the  function in (1) for  constrained flow around par t ic les ;  
is the hydraul ic  res i s tance  coefficient of grid; 
Is the r ec ip roca l  of v ibra t iona l -acce le ra t ion  fac tor ;  
is the m a s s  of a par t ic le ;  
is the p a r a m e t e r  in (22); 
is the coefficient in (18); 
a re  the instantaneous and mean p r e s s u r e  drops in bed; 
is the speed relat ive to center  of gravity;  
is the gas flow rate  through the grid; 
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X, Z 
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(Y 
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Indices 

0 
1, 2, and c 

is the time; 
is the local relative speed; 
are the laboratory and grid vertical coordinates; 
is the relative expansion; 

IS  

1S 

lS  

I S  

lS  

I S  

I S  

i ts  

I S  

lS  

lS  

the reduced resistance coefficient in (3); 
the porosity; 
the dimensionless relative expansion; 
the hydraulic resistance ratio (bed to grid); 
the viscosity; 
the dimensionless vibration frequency; 
the dimensionless relative coordinate for the center of gravity; 
the volume concentration of particles; 
the coefficient for boundary resistance reduction; 
the dimensionless time; 
the circular vibration frequency. 

is the packed state; 
are the lower and upper boundaries and center of gravity, respectively; 
are the values when the center of gravity is at the maximum distance from the grid. 
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